Synthesis and Properties of [1,2,3]Thiadiazolo[4,5- d]pyrimidine Derivatives Including Their Mesoionic Compounds. A New Class of Heterocycles ${ }^{1}$

Keitaro Senga,* Misuzu Ichiba, and Sadao Nishigaki
Pharmaceutical Institute, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo 160, Japan

Received October 18, 1977

Treatment of 6 -hydrazino-1,3-dimethyluracil (1a) with thionyl chloride gave 4,6 -dimethyl [1,2,3] thiadiazolo[4,5d]pyrimidine- $5,7(4 H, 6 H$)-dione ($5 a$), a new class of heterocycles. Reaction of 6 -hydrazino-3-methyluracil (8 a) with thionyl chloride afforded 6 -methyl $[1,2,3,5]$ thiatriazolino $[5,4$-c]pyrimidine- $5,7(6 H)$-dione 1 -oxide (10 a), which was subsequently converted to 6 -methyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidine- $5,7(4 \mathrm{H}, 6 \mathrm{H}$) -dione (14 a) by a novel 1,3 -sulfur migration. Treatment of 3-methyl-6-(1-methylhydrazino)uracil (8 d) with thionyl chloride provided the mesoionic compound, anhydro-3,6-dimethyl-5-hydroxy[1,2,3]thiadiazolo[4,5-d]pyrimidinium-7(6H)-one hydroxide (14d), via the 1,3 -sulfur migration of 3,6 -dimethyl $[1,2,3,5]$ thiatriazolino $[5,4-c]$ pyrimidine- $5,7(6 \mathrm{H}$)-dione 1 -oxide (10d). Several other thiadiazolo[4,5-d]pyrimidines including their mesoionic compounds were also synthesized. Thiation of $\mathbf{5 a}$ with phosphorus pentasulfide in pyridine yielded 4,6-dimethyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidin$5(4 H)$-one- $7(6 H)$-thione (17). Nucleophilic displacement of 17 with hydrazines furnished the corresponding 4,6dimethyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidin- $5(4 H)$-one $7(6 H)$-hydrazones ($18 \mathbf{a}-\mathbf{c}$). The photolysis of 5 a in ethanol gave 1,3-dimethyl-5-mercaptouracil disulfide (22), while the thermolysis of 5 a in Dowtherm A yielded both 1,3,5,7tetramethyl $[1,4]$ dithino $\left[2,3-d ; 5,6-e^{\prime}\right]$ dipyrimidine- $2,6,8,10(1 H, 3 H, 5 H, 7 H)$-tetrone (26) and 1,3,5,7-tetramethylthiopheno $\left[2,3-d ; 4,5\right.$ - $\left.e^{\prime}\right]$ dipyrimidine- $2,6,8,9(1 H, 3 H, 5 H, 7 H)$-tetrone (27) probably via the thirene intermediate 25.

Although [1,2,3]thiadiazolo[$5,4-d]$ pyrimidines (II) ${ }^{2}$ and [$1,2,5]$ thiadiazolo $[3,4-d]$ pyrimidines (III) ${ }^{3}$ have been extensively studied, primarily as potential purine and pteridine antagonists, nothing has been reported on the isomeric $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidines (I). The present paper

I

II

III
describes the synthesis and properties of derivatives of I , including their mesoionic compounds. The derivatives of type I are of interest from a chemical as well as a biological point of view. Thus, they may be considered analogues of various biologically important bicyclic fused pyrimidines, e.g., purines, pyrazolo[$3,4-d$]pyrimidines, v-triazolo $[4,5-d]$ pyrimidines (by virtue of the fusion of the five-membered ring to the pyrimidine nucleus), pteridines, pyrimido [5,4-e]-as-triazines, and pyrimido $[4,5-e]$ - $a s$-triazines (by the isoelectronic relationship between a sulfur atom and an ethylenic group ${ }^{4}$). Moreover, they may also be regarded as cyclic analogues of 5 -mercaptopyrimidines ${ }^{5}$ and 6 -azopyrimidines, ${ }^{6}$ which have been known to exhibit interesting biological activities.

Treatment of 1,3 -dialkyl-6-hydrazinouracils ($\mathbf{1 a}{ }^{7}$ and $\mathbf{1 b}^{8}$) with excess thionyl chloride at room temperature (an exothermic reaction) for 30 min afforded good yields of the corresponding 4,6 -dialkyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidine$5,7(4 \mathrm{H}, 6 \mathrm{H}$)-diones (5 a and $\mathbf{5 b}$), which were isolated by evaporation of the thionyl chloride and addition of water. The structures of these products were assigned by elemental analyses and spectral data. In particular, their UV spectra (see Table I) revealed the anticipated analogy with that of the known 6,8 -dimethylpyrimido $[4,5-c$]pyridazine $-5,7(6 H, 8 H)$ -
dione (7) ${ }^{9}\left[\lambda_{\text {max }}(\mathrm{EtOH}) 240(\log \in 3.98), 324 \mathrm{~nm}(3.56)\right] .^{4}$ Compounds 5 a and $\mathbf{5 b}$ could also be obtained by similar treatment of 1,3-diaikyl-6-(1-methylhydrazino) uracils ($1 \mathbf{c}^{10}$ and 1d) with thionyl chloride. When 6 -hydrazino- 1,3 -di-methyl-2-thiouracil (le) was used as a starting material, the product isolated was again 5a. An analogous replacement of a sulfur by an oxygen has recently been reported on the reaction of 6 -amino-1,3-diethyl-2-thiouracil with thionyl chlo-ride-dimethylformamide mixture to give 5,7-diethyl-3-dimethylaminoisothiazolo $[3,4-d]$ pyrimidine-4, $6(5 \mathrm{H}, 7 \mathrm{H})$-dione. ${ }^{11}$ The reaction of 1 a or $\mathbf{l b}$ with thionyl chloride presumably proceeds by the initial formation of the sulfinyl chloride intermediate ($\mathbf{2 a}$ or $\mathbf{2 b}$), followed by cyclization to the thiadiazoline S-oxide ($\mathbf{3 a}$ or $\mathbf{3 b}$), and subsequent dehydration via the Pummerer reaction intermediate ($\mathbf{4 a}$ or $\mathbf{4 b}$). A similar mechanism for the conversion of 3 to 5 via 4 has been speculated in the reaction of 6 -substituted amino-1,3-dimethyluracils with thionyl chloride, leading to 4,6 -dimethylthiazolo[$4,5-d$]pyrimidine- $5,7(4 \mathrm{H}, 6 \mathrm{H})$-diones. ${ }^{12}$ In the case of $1 \mathbf{c}$ or $\mathbf{1 d}$ with thionyl chloride, the analogously formed Pummerer reaction intermediate ($\mathbf{4} \mathbf{c}$ or 4 d) would undergo demethylation by the acid hydrolysis of the methylthiadiazolium chloride intermediate ($6 \mathbf{c}$ or 6 d) during the workup (Scheme I).

The reaction of 3 -alkyl-6-hydrazinouracils ($8 \mathbf{a},{ }^{13} \mathbf{8 b}$, and 8 c) with excess thionyl chloride at room temperature (an exothermic reaction) for 30 min also provided the corresponding $\quad 6$-alkyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidine$5,7(4 H, 6 H)$-diones ($\mathbf{1 4 a}, \mathbf{1 4 b}$, and $\mathbf{1 4 c}$). However, these reactions appeared to involve a strikingly different and unexpected mechanism with that of the foregoing. Namely, careful treatment of $8 \mathbf{a}$ with thionyl chloride at $0^{\circ} \mathrm{C}$ for 30 min gave relatively stable 6 -methyl [1,2,3,5]thiatriazolino[5,4-c]-pyrimidine-5,7(6H)-dione 1-oxide (10a), probably via the

"All compounds were recrystallized from $\mathrm{EtOH},{ }^{\circ}$ All compounds were analyzed for C, H, and N within $\pm 0.4 \%$, ${ }^{c}$ In the presence of thionyl chloride. ${ }^{d}$ In the
presence of EtOH . ${ }^{*}$ Determined in $\mathrm{CF}_{3} \mathrm{COOD}$. $/$ The chemical shift at position $2 .{ }^{\circ}$ Exchangeable with $\mathrm{D}_{2} \mathrm{O} .{ }^{n}{ }^{\text {The }}$ The chemical shift of the extranuclear amino宫
sulfinyl chloride intermediate (9a), which upon refluxing in either thionyl chloride for 15 min or ethanol for a prolonged period resulted in the formation of 14a. The structural assignment of 10 a was derived from its NMR and IR spectra: the presence of a singlet ($\delta 5.38$) for position 4 and a sulfoxide absorption band ($1090 \mathrm{~cm}^{-1}$)..14 The formulation of 14 a was based on the close relationship of its UV spectrum to that of 5 a as well as its methylation to 5a using methyl iodide in dimethylformamide containing potassium carbonate. The ring transformation of 10 a to 14 a involving a novel 1,3 -sulfur mi-
gration can be best explained in terms of the initial ring opening of 10a to the sulfinyl intermediate (11a), followed by intramolecular recyclization to the thiadiazolino $[4,5-d]$ pyrimidine S-oxide (12 a) (1,3 -sulfur migration), and subsequent dehydration through the Pummerer reaction intermediate (13a). In the absence of thionyl chloride, 12 a would directly undergo dehydration to give 14a. Attempts to isolate pure 10b and 10 c in the reaction of 8 b or 8 c with thionyl chloride were unsuccessful, indicating that the stability of 10 a might arise from an electron-releasing character of the methyl group. The

Scheme I

a. $\mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H}$
b. $\mathrm{R}^{1}=\mathrm{Et}: \mathrm{R}^{2}=\mathrm{H}$
c. $\mathrm{R}:=\mathrm{R}^{2}=\mathrm{Me}$
d. $R^{i}=E t: R^{2}=M e$

isolation of $10 a$ is worthy of note as such a compound has rarely been isolated in the reaction of 2-hydrazinopyridine with thionyl chloride ${ }^{15}$ (Scheme II).

The reaction of hydrazinouracils with thionyl chloride described above could successfully be extended to the preparation of mesoionic $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidines, a new class of mesoionic heterocycles. Namely, treatment of 3-methyl-6-(1-methylhydrazino)uracil (8d) ${ }^{16}$ with thionyl chloride at $0^{\circ} \mathrm{C}$ for 30 min gave 3,6-dimethyl $[1,2,3,5]$ thiatriazolino $[5,4-c]$ pyrimidine-5,7(6H)-dione 1 -oxide (10d) $[\delta$ $\left.5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4 \mathrm{H}) ; 1100 \mathrm{~cm}^{-1}(\mathrm{SO})\right],{ }^{14}$ which upon refluxing in thionyl chloride for 15 min afforded the mesoionic compound, anhydro-3,6-dimethyl-5-hydroxy[1,2,3]thiadiazolo $[4,5-d]$ pyrimidinium-7($6 H$)-one hydroxide (14 d) in a good yield. Compound 14 d was also attained directly from 8 d by treatment with thionyl chloride at room temperature (an exothermic reaction). As depicted in Scheme II, the rearrangement of 10 d to 14 d accompanying 1,3 -sulfur migration was envisioned as proceeding through the Pummerer reaction intermediate (13d). The thermal ring transformation observed on 10 a seems to be less favorable in the case of 10 d , since no reaction occurred even after refluxing 10d in dioxane (bp 101 ${ }^{\circ} \mathrm{C}$) for 1 h . In contrast with the reaction of 8 d with thionyl chloride giving 10d, treatment of other 3-alkyl-6-(1-methylhydrazino) uracils ($8 \mathbf{e}$ and $\mathbf{8 f}{ }^{17}$) with thionyl chloride directly gave the respective mesoionic compounds (14 e and 14 f), and attempted isolation of the intermediates (10 e and 10 f) was again unsuccessful. These findings are consistent with the observed instability of 10b and 10c. 3-Methyl-6-(2-phenylhydrazino)uracil $(8 \mathbf{g})^{18}$ was also converted directly to
anhydro-6-methyl-2-phenyl-5-hydroxy[1,2,3]thiadiazolo-[4,5-d]pyrimidinium-7(6H)-one hydroxide $(\mathbf{1 4 g})$. The characterization of the mesoionic compounds prepared was established by analytical and spectral data as well as their smooth conversion to $14 \mathrm{a}, 14 \mathrm{~b}$, and 14 c by the action of 0.5% sodium hydroxide in the cases of $14 \mathrm{~d}, 14 \mathrm{e}$, and 14 f .

We next investigated the chemical properties of 5a. Compound 5 a was extremely stable against acid hydrolysis. Thus, heating $\mathbf{5 a}$ with concentrated hydrochloric acid in a sealed tube at $100^{\circ} \mathrm{C}$ for 8 h resulted in the quantitative recovery of 5a. Similar stability was also noted in the mesoionic compounds. For example, refluxing $\mathbf{1 4 d}$ in 10% hydrochloric acid for 1 h did not give any hydrolyzed products. On the contrary, alkaline hydrolysis of 5 a with 0.6% potassium hydroxide gave the unexpected 1,3-dimethylbarbituric acid (15) ${ }^{7}$ in 20% yield as the only isolatable product ${ }^{19}$ (Scheme III). Reduction of 5a with Raney nickel in ethanol caused the dethiation and nitrogen-nitrogen double bond cleavage to give a 60% yield of 6 -amino-1,3-dimethyluracil (16). ${ }^{20}$ Thiation of 5 a with excess phosphorus pentasulfide in pyridine furnished 4,6dimethyl $[1,2,3]$ thiadiazolo $[4,5-d]$ pyrimidin- $5(4 H)$-one-
$7(6 H)$-thione (17) in a good yield. The actual site of thiation was decided by the fact that heating 17 with saturated ethanolic ammonia in a sealed tube yields the known 6 -amino-1,3-dimethyl-4-thiouracil (1,3-dimethyl-6-thiocytosine) (19). ${ }^{21}$ The sulfur atom at position 7 of 17 was found to react with hydrazines in a sealed tube to provide the corresponding 4,6-dimethyl $[1,2,3]$ thiadiazolo[4,5-d]pyrimidin-5(4H)-one $7(6 H)$-hydrazones (18a, 18b, and $\mathbf{1 8 c}$). However, aniline did not give the expected product, presumably owing to its lower nucleophilicity than that of hydrazines.

In connection with recent interest in the possible involvement of thiirene intermediates in the photolysis and thermolyses of 1,2,3-thiadiazoles ${ }^{22}$ and 1,2,3-benzothiadiazoles, ${ }^{23}$ we also examined these reactions on $5 \mathbf{a}$. The irradiation of $\mathbf{5 a}$ in ethanol by a high-pressure mercury lamp in a stream of nitrogen provided a 50% yield of symmetric 1,3 -dimethyl- 5 mercaptouracil disulfide (22). The disulfide 22 was readily characterized by the NMR spectrum and by its alternative synthesis consisting of the thermolysis of 1,3-dimethyl-5mercaptouracil sulfide (23) ${ }^{24}$ in Dowtherm A. A reasonable mechanism for the conversion of $\mathbf{5 a}$ to 22 is that the initial formation of the diradical (20a) by the extrusion of nitrogen, followed by hydrogen abstraction from the solvent to give the thiyl radical (21), and subsequent dimerization. The thermolysis of 23 to 22 may also be explained by the participation of 21 . The structure of 22 was also supported by its thermal conversion to 23 in Dowtherm A (Scheme IV).

In contrast to the above results, the thermolysis of $5 \mathbf{5}$ in Dowtherm A at $280^{\circ} \mathrm{C}$ for 4 h surprisingly gave both 1,3,5,7-tetramethyl [1,4]dithiino[2,3- $d ; 5,6-e^{\prime}$]dipyrimidine$2,6,8,10(1 H, 3 H, 5 H, 7 H)$-tetrone (26) and 1,3,5,7-tetrameth-ylthiopheno[2,3-d;4,5-e']dipyrimidine-2,6,8,9-($1 H, 3 H, 5 H,-$ 7 H)-tetrone (27) in 24 and 65% yield, respectively. Compound 27 was readily precipitated out from the reaction mixture and 26 was isolated by dilution of the filtrate with ethanol. When 5,7-dimethyl $[1,2,3]$ thiadiazolo $[5,4-d]$ pyrimidine$4,6(5 H, 7 H)$-dione (24), ${ }^{25}$ an isomer of $5 \mathbf{a}$, was treated under the same conditions, 27 was again obtained in 84% yield. ${ }^{26}$ The NMR data and elemental analyses of 26 and 27 supported the structures indicated; however, these data could not unequivocally exclude the possibility of the isomeric structures 29 for 26 and 30 or 31 for 27 . Rigorous structural proofs of 26 and 27 were accomplished by the following evidences. Heating 26 in Dowtherm A under similar conditions afforded 27, indicating that 26 is a precursor of 27 . Reduction of 27 with Raney nickel furnished symmetric $5,5^{\prime}$-di(1,3-dimethyl) uracil (28), whose NMR spectrum ($\mathrm{CF}_{3} \mathrm{COOD}$) showed two singlets (δ 3.10 and 3.17) as four N-methyl groups and a singlet ($\delta 7.43$)
Scheme II

as two protons at position 6 and 6^{\prime}. The close proximity of the latter chemical shift to the reported value ($\mathrm{CF}_{3} \mathrm{COOD}, \delta$ $7.34)^{27}$ for position 6 of 1,3-dimethyluracil supported the validity of the structure of $\mathbf{2 7}$. Additional evidence for the assignment of 27 was derived from the comparison of its UV spectrum with that of recently reported 1,3,5,7-tetraethylthiopheno $\left[2,3-d ; 4,5-e^{\prime}\right]$ dipyrimidine $-2,6,8,9(1 H, 3 H, 5 H,-$ 7 H)-tetrone (32), ${ }^{28}$ which could alternately be prepared by the thermolysis of $\mathbf{5 b}$. We suggest that the formation of 27 from either 5 a or 24 involves the intermediacy of thiirene (25). Thus, the thermolysis of 5 a or 24 could give the respective diradicals (20 a and 20b), both of which cyclize to $\mathbf{2 5}$. Subsequent ring opening of 25 would provide both diradicals 20 a and 20 b , respectively. Reaction of either 20 a with 20 b or 25 with 20 b could yield 26 . Thus formed 26 can then undergo ring contraction to give 27 . The conversion of 1,4 -dithiins to thiophenes has been well documented ${ }^{29}$ (Scheme V).

Experimental Section

Melting points were taken on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Japan Spectroscopic Co., Ltd., spectrophotometer Model IR-E from samples mulled in Nujol. NMR spectra were determined at 60 MHz with a Varian T-60 spectrometer using tetramethylsilane as the internal standard. UV spectra were recorded on a Hitachi 124 spectrophometer. Mass spectra were performed on a JMS D100 EI spectrometer by a direct inlet system at 75 eV . $[1,2,3]$ Thiadiazolo $[4,5-d$]pyrimidine derivatives prepared are summarized in Table I.

Preparation of 1,3-Dialkyl-6-hydrazinouracils (1a-e) and 3-Alkyl-6-hydrazinouracils (8a-g). Compounds 1a, ${ }^{7} 1 \mathbf{b},{ }^{8} 1 \mathbf{c},{ }^{10} 8 \mathbf{a},{ }^{13}$ $8 d,{ }^{16} 8 \mathbf{f},{ }^{17}$ and $8 \mathbf{g}^{18}$ were prepared according to the reported procedures, and other uracils were obtained as follows.

1,3-Diethyl-6-(1-methylhydrazino)uracil (1d) and 6-(1-Me-thylhydrazino)-3-n-propyluracil (8e). A mixture of 6 -chloro1,3 -diethyluraci ${ }^{7}(0.426 \mathrm{~g}, 0.002 \mathrm{~mol})$ or 6 -chloro- 3 - n-propyluraci ${ }^{30}$ $(1.0 \mathrm{~g}, 0.005 \mathrm{~mol})$ and methylhydrazine (1 mL) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was stirred at room temperature for 3 h . The reaction mixture was evap-

Scheme III

17
$\downarrow^{\mathrm{NH}_{2} \mathrm{NHR}}$

19

18a, $R=H$
b. $\mathrm{R}=\mathrm{Me}$
c. $\mathrm{R}=\mathrm{Ph}$
orated in vacuo and the residue was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to give the corresponding products.

Compound 1d ($0.26 \mathrm{~g} ; 62 \%$): mp 102-104 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $50.93 ; \mathrm{H}, 7.60 ; \mathrm{N}, 26.40$. Found: C, $50.72 ; \mathrm{H}, 7.59 ; \mathrm{N}$, 26.31.

Compound $8 \mathrm{e}(0.86 \mathrm{~g} ; 85 \%)$: mp $119-120^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ C, 48.47 ; H. 7.12; N, 28.27. Found: C, 48.51 ; H, 7.05; N, 28.15.

6-Hydrazino-3-n-propyluracil (8b) and 3-Benzyl-6-hydrazinouracil (8c). A mixture of 6 -chloro-3- n-propyluracil ${ }^{13}(0.94 \mathrm{~g}, 0.005$ mol) or 3-benzyl-6-chlorouracil ${ }^{31}(0.6 \mathrm{~g}, 0.0025 \mathrm{~mol})$ and 10% hydrazine hydrate $(10 \mathrm{~mL})$ was refluxed for 45 min . The reaction mixture

29

31
was evaporated in vacuo and the residue was covered with $\mathrm{H}_{2} \mathrm{O}$. The insoluble material was filtered and recrystallized from EtOH to give the corresponding products.
Compound 8b ($0.64 \mathrm{~g} ; 62 \%$): mp $242-243{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ C, $45.64 ; \mathrm{H}, 6.57 ; \mathrm{N}, 30.43$. Found: C, $45.33 ; \mathrm{H}, 6.47 ; \mathrm{N}$, 30.48 .

Compound $8 \mathrm{c}(0.5 \mathrm{~g} ; 90 \%)$: mp $212-213^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 56.89; $\mathrm{H}, 5.21 ; \mathrm{N}, 24.13$. Found: C, $56.83 ; \mathrm{H}, 5.29 ; \mathrm{N}$, 24.34.

6-Hydrazino-1,3-dimethyl-2-thiouracil (le). This compound was prepared by two steps starting with 1,3-dimethyl-2-thiobarbituric acid. ${ }^{32}$ A mixture of 1,3 -dimethyl-2-thiobarbituric acid ($1.72 \mathrm{~g}, 0.01$ $\mathrm{mol})$ and $\mathrm{POCl}_{3}(10 \mathrm{~mL})$ containing $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was refluxed for 45 min . The excess POCl_{3} was removed in vacuo and the residue (syrup) was poured onto ice- $\mathrm{H}_{2} \mathrm{O}$. The solution was extracted with CHCl_{3} (three 30 -mL portions) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The CHCl_{3} extracts were evaporated in vacuo and the residue was recrystallized from EtOH to give 6 -chloro-1,3-dimethyl-2-thiouracil ($1 \mathrm{~g} ; 53 \%$): mp $189-191{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 37.80 ; \mathrm{H}, 3.71 ; \mathrm{N}, 14.70$. Found: C, 37.56; H, 3.77; N, 14.99.
A mixture of the chlorouracil ($0.38 \mathrm{~g}, 0.002 \mathrm{~mol}$) and 10% hydrazine hydrate (5 mL) was treated as described in the preparation of 8 b and 8 c to give le ($0.21 \mathrm{~g} ; 60 \%$): mp $223-224^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 38.69 ; \mathrm{H}, 5.42 ; \mathrm{N}, 30.09$. Found: C, $38.70 ; \mathrm{H}, 5.31 ; \mathrm{N}$, 30.00 .

4,6-Dialkyl[1,2,3]thiadiazolo[4,5-d]pyrimidine-5,7(4 $\mathrm{H}, 6 \mathrm{H}$)diones ($5 \mathrm{a}-\mathrm{b}$). Method A. A mixture of the appropriate hydrazinouracils la-d (0.01 mol) and thionyl chloride (20 mL) was stirred

Scheme IV

20a

at room temperature (an exothermic reaction) for 30 min . The resulting solution was evaporated in vacuo and the residue was covered with chilled $\mathrm{H}_{2} \mathrm{O}$. The insoluble material was filtered and recrystallized to give the corresponding 5 .

In complete analogy with the above results, treatment of $1 \mathbf{e}$ with thionyl chloride afforded 5a.

Method B. A mixture of 6-methyl $[1,2,3]$ thiadiazolo[4,5- d]pyrimidine $-5,7(4 H, 6 H)$-dione (14 a) ($0.184 \mathrm{~g}, 0.001 \mathrm{~mol})$, methyl iodide ($0.426 \mathrm{~g}, 0.003 \mathrm{~mol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.414 \mathrm{~g}, 0.003 \mathrm{~mol})$ in DMF (10 mL) was refluxed for 2 h . The reaction mixture was evaporated in vacuo and the residue was covered with $\mathrm{H}_{2} \mathrm{O}$. The insoluble solid was filtered and recrystallized to give 5a.

6-Alkyl[1,2,3]thiadiazolo[4,5-d]pyrimidine-5,7(4H,6H)-di-
ones (14a-c). Method A. A mixture of the appropriate hydrazinouracils $8 \mathbf{a - c}(0.001 \mathrm{~mol})$ with thionyl chloride (2 mL) was stirred at room temperature (an exothermic reaction) for 30 min . The reaction mixture was treated as described in method A of $5 \mathbf{a}-\mathrm{b}$ to give the corresponding 14 .

Method B. A suspension of 6-methyl[1,2,3,5]thiatriazolino[5,4-c]pyrimidine- $5,7(6 H)$-dione 1 -oxide (10 a) $(0.2 \mathrm{~g}, 0.001 \mathrm{~mol})$ and thionyl chloride (2 mL) was refluxed for 15 min . The reaction mixture was treated as described in method A of $5 \mathbf{a}-\mathbf{b}$ to give 14a.

Method C. A mixture of $10 \mathrm{a}(0.2 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\mathrm{EtOH}(10 \mathrm{~mL})$ was refluxed for 3 h . The reaction mixture was evaporated in vacuo and the residue was recrystallized to yield $14 a$.

Method D. A suspension of the appropriate anhydro-6-alkyl-3-methyl-5-hydroxy[1,2,3]thiadiazolo[4,5-d]pyrimidinium-7(6H)-one hydroxide ($14 \mathrm{~d}-\mathrm{e}$) $(0.001 \mathrm{~mol})$ in $5 \% \mathrm{NaOH}(5 \mathrm{~mL})$ was heated at 95 ${ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was neutralized with $5 \% \mathrm{HCl}$ and extracted with CHCl_{3} (three $10-\mathrm{mL}$ portions). The CHCl_{3} extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Recrystallization of the residue afforded the respective $14 \mathbf{a}-\mathbf{c}$.

6-Methyl[1,2,3,5]thiatriazolino[5,4-c]pyrimidine-5,7(6H)-
dione 1 -Oxides (10 a and 10 d). To ice-cooled $\left(0^{\circ} \mathrm{C}\right)$ thionyl chloride (5 mL) was added $8 \mathbf{a}$ or $8 \mathbf{d}(0.001 \mathrm{~mol})$ over a period of 5 min with good stirring, and the mixture was maintained at the same temperature for 30 min . The reaction mixture was rapidly evaporated in vacuo at room temperature and the residue was covered with ice $-\mathrm{H}_{2} \mathrm{O}$. The separated solid was recrystallized to give the corresponding pure products.

Compound 10a: recrystallized from MeOH ($1.35 \mathrm{~g} ; 67 \%$); mp $197-198^{\circ} \mathrm{C}$; IR 1090 (SO), 1720 (CO), $3160 \mathrm{~cm}^{-1}$ (NH); NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.38(\mathrm{~s}, \mathrm{H}, \mathrm{C}-4 \mathrm{H}), 12.50(\mathrm{br}, 2 \mathrm{H}$, $\mathrm{N}-2 \mathrm{H}$ and $\mathrm{N}-3 \mathrm{H})$; MS $m / e 202\left(\mathrm{M}^{+}\right)$; UV $\lambda_{\max }(\mathrm{EtOH}) 260(\log \epsilon$ 3.85), $400 \mathrm{~nm}(4,04)$. Anal. Caled for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 29.70 ; \mathrm{H}, 2.97$; N, 27.71. Found: C, $30.01 ; H, 3.01 ;$ N, 27.46 .

Compound 10d: recrystallized from EtOH ($1.45 \mathrm{~g} ; 67 \%$); mp $202^{\circ} \mathrm{C}$; IR $1100(\mathrm{SO}), 1715(\mathrm{CO}), 3080 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 3.10$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 5.32 (s, $1 \mathrm{H}, \mathrm{C}-4 \mathrm{H}$), 12.00 (br, 1 $\mathrm{H}, \mathrm{NH}) ; \mathrm{MS} m / e 216\left(\mathrm{M}^{+}\right) ; \mathrm{UV} \lambda_{\max }$ (EtOH) $265(\log \epsilon 4.25), 343 \mathrm{~nm}$ (4.24). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 33.32 ; \mathrm{H}, 3.74 ; \mathrm{N}, 25.92$. Found: C, 33.61; H, 3.72; N, 25.96.
anhydro-6-Alkyl-3-methyl-5-hydroxy[1,2,3]thiadiazolo-
[4,5-d]pyrimidinium-7 $(6 \mathrm{H})$-one Hydroxides $(14 \mathrm{~d}-\mathrm{f})$ and anhy-dro-6-Methyl-2-phenyl-5-hydroxy[1,2,3]thiadiazolo[4,5-d]-pyrimidinium-7 (6 H)-one Hydroxide (14 g). Method A. A mixture of the appropriate $8 \mathbf{d}-\mathrm{g}(0.001 \mathrm{~mol})$ and thionyl chloride $(1 \mathrm{~mL})$ was stirred at room temperature (an exothermic reaction) for 30 min . The reaction mixture was evaporated in vacuo and the residue was dissolved in chilled $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The solution was extracted with CHCl_{3} (three $20-\mathrm{mL}$ portions) and the CHCl_{3} extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the extracts in vacuo and the recrystallization of the residue afforded the corresponding products $14 \mathrm{~d}-\mathrm{g}$.

Method B. A mixture of $10 \mathrm{~d}(0.216 \mathrm{~g}, 0.001 \mathrm{~mol})$ and thionyl chloride (2 mL) was refluxed for 15 min . The reaction mixture was treated as described in method A to give 14d.

1,3-Dimethylbarbituric Acid (15). A suspension of 5a (0.198 g, 0.001 mol) in $0.6 \% \mathrm{KOH}(5 \mathrm{~mL})$ was heated at $95^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was neutralized with AcOH and the precipitated solid was filtered. Recrystallization from EtOH gave 15 ($0.03 \mathrm{~g}, 20 \%$), mp $123-124^{\circ} \mathrm{C}$, identical with an authentic sample. ${ }^{7}$
6-Amino-1,3-dimethyluracil (16). A mixture of $5 \mathrm{a}(0.198 \mathrm{~g}, 0.001$ mol) and Raney Ni (NDHT-90, 0.5 g) in $\mathrm{EtOH}(20 \mathrm{~mL}$) was refluxed for 1 h . The reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was recrystallized from EtOH-DMF to give $16(0.09 \mathrm{~g}, 60 \%), \mathrm{mp}>300^{\circ} \mathrm{C}$, identical with an authentic sample. ${ }^{20}$

4,6-Dimethyl[1,2,3]thiadiazolo[4,5-d]pyrimidin-5(4H)-one$7(6 H)$-thione (17). A mixture of $5 \mathrm{a}(1.98 \mathrm{~g}, 0.01 \mathrm{~mol})$ and $\mathrm{P}_{2} \mathrm{~S}_{5}(4.44$ $\mathrm{g}, 0.02 \mathrm{~mol}$) in pyridine (60 mL) was refluxed for 3 h . The reaction mixture was evaporated in vacuo and the residue was covered with hot $\mathrm{H}_{2} \mathrm{O}$. After cooling, the precipitates were filtered and recrystallized to give 17.

4,6-Dimethyl[1,2,3]thiadiazolo[4,5-d]pyrimidin-5(4 H$)$-one $7(6 \mathrm{H})$-Hydrazones ($18 \mathrm{a}-\mathrm{c}$). A mixture of $17(0.214 \mathrm{~g}, 0.001 \mathrm{~mol})$ and the appropriate hydrazines (1 mL) in EtOH (5 mL) was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 3 h . The precipitated crystals were filtered and recrystallized to give the corresponding products $18 a-c$.

6-Amino-1,3-dimethyl-4-thiouracil (1,3-Dimethyl-6-thiocytosine; 19). A suspension of $17(0.214 \mathrm{~g}, 0.001 \mathrm{~mol})$ in saturated ethanolic $\mathrm{NH}_{3}(10 \mathrm{~mL})$ was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 2 h . The precipitated solid was filtered and recrystallized from EtOH to
give $19(0.16 \mathrm{~g} ; 94 \%), \mathrm{mp} 267^{\circ} \mathrm{C}$ dec, identical with an authentic sample. ${ }^{21}$

1,3-Dimethyl-5-mercaptouracil Disulfide (22). Method A. A solution of $5 \mathrm{a}(0.198 \mathrm{~g}, 0.001 \mathrm{~mol})$ in EtOH (400 mL) was irradiated with a $100-\mathrm{W}$ high-pressure mercury lamp surrounded by a $\mathrm{H}_{2} \mathrm{O}$ cooled Pyrex filter at $30^{\circ} \mathrm{C}$ for 2 h in a stream of nitrogen. The reaction mixture was evaporated in vacuo and the residue was recrystallized from EtOH to give $22\left(0.086 \mathrm{~g}\right.$; 50%): mp $243-245^{\circ} \mathrm{C}$; IR 1710 $\mathrm{cm}^{-1}(\mathrm{CO})$; NMR ($\left.\mathrm{CF}_{3} \mathrm{COOD}\right) \delta 3.23\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two $\left.\mathrm{NCH}_{3}\right), 3.33(\mathrm{~s}, 6 \mathrm{H}$, two NCH_{3}), $8.17\left(\mathrm{~s}, 2 \mathrm{H}\right.$, two $\mathrm{C}-6 \mathrm{H}$); MS $m / e 342\left(\mathrm{M}^{+}\right)$; UV $\lambda_{\max }$ (EtOH) 220 sh $(\log \in 3.93), 285 \mathrm{~nm}$ (4.01). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 42.09; H, 4.13; N, 16.36. Found: C, $42.20 ; \mathrm{H}, 4.28$; $\mathrm{N}, 16.30$.

Method B. A mixture of 1,3-dimethyl-5-mercaptouracil sulfide $(23)^{24}(0.31 \mathrm{~g}, 0.001 \mathrm{~mol})$ and Dowtherm $\mathrm{A}(1 \mathrm{~mL})$ was heated at 280 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with n-hexane (10 mL) and the precipitated crystals were filtered. Recrystallization of the crude product from EtOH afforded 22 ($0.08 \mathrm{~g} ; 24 \%$), identical with the material prepared by method A.

1,3-Dimethyl-5-mercaptouracil Sulfide (23). A mixture of 22 $(0.103 \mathrm{~g}, 0.003 \mathrm{mcl})$ and Dowtherm A (1 mL) was heated at $270^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was treated as described in method B of 22 to give $23(0.03 \mathrm{~g} ; 32 \%), \operatorname{mp} 288^{\circ} \mathrm{C}$, identical with an authentic sample. ${ }^{24}$

1,3,5,7-Tetramethyl[1,4]dithiino[2,3-d;5,6-e']dipyrimidine$2,6,8,10(1 H, 3 H, 5 H, 7 H)$-tetrone (26) and 1,3,5,7-Tetramethyl-thiopheno[2,3-d;4,5-e']dipyrimidine-2,6,8,9(1H,3H,5H,7H)tetrone (27). A mixture of $5 \mathrm{aa}(1.0 \mathrm{~g}, 0.005 \mathrm{~mol})$ and Dowtherm A (2 mL) was heated at $280^{\circ} \mathrm{C}$ for 4 h . After standing overnight at room temperature, the precipitated solid was filtered and recrystallized from DMF to give $27(0.5 \mathrm{~g} ; 65 \%): \mathrm{mp}>300^{\circ} \mathrm{C}$; IR $1705 \mathrm{~cm}^{-1}$ (CO); NMR ($\mathrm{CF}_{3} \mathrm{COOD}$) $\delta 3.13$ ($\mathrm{s}, 6 \mathrm{H}$, two NCH_{3}), $3.26\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two NCH_{3}); MS $m / e 308\left(\mathrm{M}^{+}\right)$; UV $\lambda_{\text {max }}(\mathrm{EtOH}) 245(\log \in 2.95), 304 \mathrm{~nm}(2.80)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 46.80 ; \mathrm{H}, 3.97 ; \mathrm{N}, 18.40$. Found: C, 46.75; H, 3.90; N. 18.18.

The filtrate which removed 27 was diluted with EtOH (5 mL) and the precipitated crystals were filtered. The crude product was recrystallized from DMF-EtOH to give 26 ($0.2 \mathrm{~g} ; 24 \%$): mp $>300^{\circ} \mathrm{C}$; IR $1710 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR ($\left.\mathrm{CF}_{3} \mathrm{COOD}\right) \delta 3.53\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two NCH_{3}), 3.86 $\left(\mathrm{s}, 6 \mathrm{H}\right.$, two $\left.\mathrm{NCH}_{3}\right)$; MS $m / e 340\left(\mathrm{M}^{+}\right)$; UV $\lambda_{\max }(\mathrm{EtOH}) 230(\log \epsilon$ 3.64), 280 (3.27), 310 nm (2.98). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 42.57 ; H, 3.24; N. 16.53. Found: C, 42.35; H, 3.53; N, 16.47.

Compound 27 was also prepared by the thermolysis of 5,7 -dimethyl $[1,2,3]$ thiadiazolo $[5,4-d]$ pyrimidine-4,6($5 \mathrm{H}, 7 \mathrm{H})$-dione (24) $(0.8 \mathrm{~g}, 0.004 \mathrm{~mol})$ in Dowtherm A (3 mL) at $290^{\circ} \mathrm{C}$ for $3 \mathrm{~h} \mathrm{in} 81 \%$ yield (0.41 g).

5,5-Di(1,3-dimethyl) uracil (28). A suspension of 27 ($0.3 \mathrm{~g}, 0.001$ mol) and Raney Ni (NDHT-90, 1 g) in EtOH (30 mL) was refluxed with stirring for 30 min . The reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was recrystallized from EtOH to give 28 ($0.26 \mathrm{~g}, 95 \%$): mp $286{ }^{\circ} \mathrm{C}$; IR $1690 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CF}_{3} \mathrm{COOD}\right) \delta 3.10\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two $\left.\mathrm{NCH}_{3}\right), 3.17\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two $\left.\mathrm{NCH}_{3}\right), 7.43$ (s, 2 H , two $\mathrm{C}-6 \mathrm{H}$); MS m/e 278 (M^{+}); UV $\lambda_{\text {max }}(\mathrm{EtOH}) 238 \mathrm{sh}(\log$ $\epsilon 3.77$), 294 nm (3.89). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 51.79 ; \mathrm{H}, 5.07$; N, 20.14. Found: C, $51.78 ; \mathrm{H}, 4.95 ; \mathrm{N}, 19.76$.

1,3,5,7-Tetraethylthiopheno[2,3-d;4,5-e'] dipyrimidine-

$2,6,8,9(1 H, 3 H, 5 H, 7 H)$-tetrone (32). A mixture of $5 \mathrm{~b}(0.45 \mathrm{~g}, 0.002$ $\mathrm{mol})$ and Dowtherm A $(0.2 \mathrm{~mL})$ was heated at $250^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with n-hexane (10 mL) and the precipitated crystals were filtered. Recrystallization from EtOAc afforded $32(0.2 \mathrm{~g} ; 55 \%): \operatorname{mp} 204-205^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{28} \mathrm{mp} 204-205^{\circ} \mathrm{C}$); IR $1710 \mathrm{~cm}^{-1}$ (CO) ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(\mathrm{t}, 6 \mathrm{H}\right.$, two $\left.\mathrm{CH}_{3}-\right), 1.40\left(\mathrm{t}, 6 \mathrm{H}\right.$, two $\mathrm{CH}_{3}-$), 4.02 (two q, 8 H , four $-\mathrm{CH}_{2}$-); MS m/e $364\left(\mathrm{M}^{+}\right.$); UV $\lambda_{\text {max }}(\mathrm{EtOH}) 245$ ($\log \in 3.94$), $304 \mathrm{~nm}\left(3.91\right.$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 52.72 ; \mathrm{H}$, $5.54 ;$ N, 15.38 . Friund: C, $52.75 ; \mathrm{H}, 5.31 ;$ N, 15.33.

Acknowledgment. The authors are grateful to Mr. Katsuhiko Nagahara of Kitasato University for his cooperation in spectral measurements and elemental analyses.

Registry No.-15, 41949-07-9; 16, 6642-31-5; 19, 6506-84-9; 22, $65150-45-0$; 23, $37737-50-1$; 24, 65150-48-3; 26, 65150-46-1; 27, 65150-47-2; 28, 7033-42-3; 32, 65150-50-7; 6-chloro-1,3-diethyluracil, 65150-41-6; 6-chloro-3-n-propyluracil, 50721-48-7; methylhydrazine, 60-34-4; 3-benzyl-6-chlorouracil, 5759-76-2; 1,3-dimethyl-2-thiobarbituric acid, 3158-63-2; 6-chloro-1,3-dimethyl-2-thiouracil, 65150-51-8; hydrazine, 302-01-2; phenylhydrazine, 100-63-0; 3-npropylbarbituric acid, 5496-93-5.

References and Notes

(1) Preliminary report: K. Senga, M. Ichiba, and S. Nishigaki, Tetrahedron Lett., 1129 (1976).
(2) For example: (a) F. L. Rose, J. Chem. Soc., 3448 (1952); (b) M. Ishidate and H . Yuki, Chem. Pharm. Bull., 8, 131 (1960); (c) E. C. Taylor and E. E. Garcia, J. Org. Chem., 29, 2121 (1964); (d) D. Martin and W. Mucke, Justus Liebigs Ann. Chem., 682, 90 (1965); (e) A. Albert, J. Chem. Soc. C. 152 (1969).
(3) For example: (a) A. Schrage and G. H. Hitchings, J. Org. Chem., 16, 207 (1951); (b) F. F. Blick and H. C. Goot, J. Am. Chem. Soc., 76, 2798 (1954); (c) G. M. Timmis, J. Chem. Soc., 804 (1958); (d) Y. F. Shealy, J. D. Clayton, and J. A. Montgomery, J. Org. Chem., 27, 2154 (1962).
(4) The electronical similarlity of structures, differing only in the substitution of a sulfur atom for an ethylenic group, has been well known: see ref 3d and references cited therein.
(5) L. Szabo, T. I. Kalman, and T. J. Bardos, J. Org. Chem., 35, 1434 (1970), and references cited therein.
(6) G. E. Wright and N. C. Brown, J. Med. Chem., 17, 1277 (1974), and reterences cited therein.
(7) W. Pfleiderer and K.-H. Schündehütte, Justus Liebigs Ann. Chem., 612, 158 (1958).
(8) G. Strauss, Justus Liebigs Ann. Chem., 638, 205 (1960).
(9) W. Pfleiderer and H. Ferch, Justus Liebigs Ann. Chem., 615, 48 (1958).
(10) F. Yoneda and T. Nagamatsu, Bull. Chem. Soc. Jpn., 48, 1484 (1975).
(11) Y. Furukawa, O. Miyashita, and S. Shima, Chem. Pharm. Bull., 24, 970 (1976).
(12) I. M. Goldman, J. Org. Chem., 34, 3285 (1969).
(13) T. K. Liao, F. Baiocchi, and C. C. Cheng, J. Org. Chem., 31, 900 (1966).
(14) In a preliminary report, 'the structure of 10 a as well as 10 d was assigned as the isomeric 12a and 12d, respectively; however, the NMR data excluded the possibility of the latter structures.
(15) T. Kauffman and H. Marhan, Justus Liebigs Ann. Chem., 96, 2519 (1963).
(16) G. D. Daves, R. K. Robins, and C. C. Cheng, J. Am. Chem. Soc., 84, 1724 (1962)
(17) F. Yoneda, T. Nagamatsu, and M. Ichiba, J. Heterocycl. Chem., 11, 83 (1974).
(18) K. Gauri, German Patent 1280877 (1968); Chem. Abstr., 70, 28937e (1969).
(19) In general, alkaline treatment of 1,3 -dimethyluracil-fused heterocycles causes the ring cleavage of the uracil nucleus; for example: H . Autherhoff and M. F. Hebler, Arzneimittel-Forsh., 9, 621 (1959); E. C. Taylor, H. M. Loux, E. A. Falco, and G. H. Hitchings, J. Am. Chem. Soc., 77, 2243 (1955).
(20) V. Papesch and E. F. Schroeder, J. Org. Chem., 16, 1879 (1951).
(21) K. Senga, F. Yoneda, and S. Nishigaki, J. Org. Chem., 36, 1829 (1971).
(22) S. Braslawsky and J. Heicklen, Chem. Rev., 77, 473 (1977)
(23) (a) J. I. G. Cadogan, J. T. Sharp, and M. J. Trattles, J. Chem. Soc., Chem. Commun., 900 (1974); (b) T. Wooldridge and T. D. Roberts, Tetrahedron Lett., 2643 (1977).
(24) R. J. Badger, D. J. Brown, and N. V. Khromov-Borisov, Aust. J. Chem., 25, 2275 (1972).
(25) S. Nishigaki, K. Shimizu, and K. Senga, Chem. Pharm. Bull., 25, 2790 (1977).
(26) Compound 26 could not be isolated in this reaction
(27) W. Pfleiderer, Top. Heterocycl. Chem., 56-85 (1969).
(28) T. Itoh, H. Ogura, and K. A. Watanabe, Tetrahedron Lett., 2595 (1977).
(29) H. C. van der Plas, "Ring Transformations of Heterocycles", Vol. 2, Academic Press, New York, N.Y., 1972, pp 110-113.
(30) This compound was prepared by two steps. Treatment of n-propylurea (10.2 $\mathrm{g}, 0.1 \mathrm{~mol}$) with diethyl malonate ($18 \mathrm{~g}, 0.11 \mathrm{~mol}$) in EtOH (50 mL) with dissolving metallic $\mathrm{Na}(2.73 \mathrm{~g}, 0.12 \mathrm{~g}$ atom) according to the reported procedure [A. Stein, H. P. Gregor, and P. E. Spoerri, J. Am. Chem. Soc., 78, 6185 (1956)] gave 3 -n-propylbarbituric acid ($15.6 \mathrm{~g} .92 \%$): mp $105-106{ }^{\circ} \mathrm{C}$ (from EtOH). Anal. Caled for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 49.40 ; \mathrm{H}, 5.92$; $\mathrm{N}, 16.46$. Found: $\mathrm{C}, 49.32 ; \mathrm{H}, 6.05 ; \mathrm{N}, 16.56$. Chlorination of the barbituric acid ($17.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) with POCl_{3} (100 mL) containing $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ by the method given in the preparation of 1 e afforded 6 -chloro-3- n-propyluracil $\left(9 \mathrm{~g}, 50 \%\right.$): $\mathrm{mp} 158-160^{\circ} \mathrm{C}$ (from EtOH). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}: \mathrm{C}$, 44.57; H, 4.82; N, 14.85. Found: C, 44.82; H, 4.58; N, 14.87.
(31) H. Goldner, G. Dietz, and E. Carstens, Justus Liebigs Ann. Chem., 691, 142 (1966).
(32) R. G. Shepherd, J. Chem. Soc., 4410 (1964).

